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ABSTRACT

We introduce a new inverse approach for efficiently identifying parameter structures
(zonation) for the permeability field using the level set method, given spatially distributed
observations of the permeability field (both lithology and/or permeability values) and hy-
draulic head measurements at various times. The permeability field is characterized by a
number of zones, each of which represents a different lithology and may have a different
permeability value. In this method, the boundaries of zones are represented by a level
set function. Starting from an initial choice, these boundaries are implicitly manipulated
through the evolution of the level set function, which is sequentially optimized to match
the observed data and to satisfy some parameter regularization requirements. No assump-
tion has been made on the shape, size, locations, and the number of these zones, or the
correlation structure and the proportion of different lithology. A synthetic example shows
that this method can locate those embedded zones efficiently.

1. INTRODUCTION

Accurately identifying geologic conceptual models, which include spatial distributions
of stratigraphic units and fault zones and their properties (permeability, porosity, sorption
coefficient, etc.), is critical to a wide range of applications, for example, contaminant site
cleanup, reservoir simulations for oil/gas recovery, geological carbon sequestration. It is
well known that geological systems are intrinsically deterministic but complex. However,
these complex geological conceptual models are constrained only at a limited number of
locations due to the high costs associated with subsurface measurements. Poor geologi-
cal constraints leads to uncertainty in determining model structures and their hydrologic
properties and thus, to uncertainty in predicting flow and solute transport in the subsur-
face. Although heterogeneity of hydraulic properties within stratigraphic units or fault
zones plays an important role in flow and solute transport (Lu and Zhang, 2002; Lu
and Zhang, 2003), it has been recognized recently that the uncertainty in conceptual
model structures is the main source of prediction uncertainty (Neuman and Wierenga,
2003). Interfaces between stratigraphic units and fault zones are traditionally determined
by geological correlation based on a limited number of boreholes and outcrop, without
considering measurements of system state variables (e.g. pressure head, radionuclide con-

centration).
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When observations of such state variables are available at a site, model calibration
techniques can be used to improve parameter estimates and characterize uncertainties
of these estimates (Neuman and Wierenga, 2003). In this calibration process, subsurface
properties (say, permeability) of stratigraphic units and fault zones are iteratively updated
such that the residual between the observed and modeled pressure head (or radionuclide
concentration) is minimized. It is important to note that all existing model calibration
techniques assume that the conceptual model is correct and they are not capable of updat-
ing interfaces between stratigraphic units and fault zones. Because these techniques rely
on a prescribed geological conceptual model, calibrated parameter estimates are model-
dependent. As a consequence, successful identification of parameter values from the model
calibration process depends on the correctness of the input geological conceptual model.

Sun and Yeh [1985] were the first to propose a method to identify simultaneously both
the parameter zonation and its parameter values for the hydraulic conductivity field.
Using some model structure identification criteria, Carrera and Neuman [1986] were able
to choose the best parameter zonation pattern among a number of given alternatives.
FEppstein and Dougherty [1996] used a modified version of the extended Kalman filter,
a data-driven procedure that dynamically determines and refines zonations. Tsai et al.
[2003] used Voronoi zonation to parameterize the unknown distributed parameter and
solved the inverse problem by a sequential global-local optimization procedure.

In this study, we develop a general methodology for parameter zonation identification
based on the level set method and apply the approach to a simple case of one material
embedded in another. This method can be used to identify, for example, low-permeability
layers in a relatively higher permeability porous media (or vice versa), or highly permeable
fault zones in the subsurface.

The level set method is a very powerful tool for solving problems that involve geometry
and geometric evolution [Osher and Sethian, 1988]. It has also been applied to solving
shape optimization problems [Burger, 2003]. By a shape we mean a bounded region
D € R" with a C'! boundary. Instead of working on D directly, in the level set method a
function ¢(x) that corresponds to boundaries is manipulated to adjust D implicitly. The
method has been used in several fields, including image segmentation [Lie et al., 2005]
and inverse problems [Santosa, 1996]. One of the advantages of the level set method is
that it is much easier to work with a globally defined function than to keep track of the
boundaries of regions of interest, which may split into many regions or merge

2. PROBLEM STATEMENT

We consider transient water flow in saturated porous media governed by the following
equation

Oh(x,t)

V- [Ks(x)Vh(x,t)] + g(x,t) = SST’ x € (1)

subject to appropriate initial and boundary conditions
h(x,0) = Hy(x), x €, (2)
h(x,t) = H(x,1), xelp (3)

—K;(x)Vh(x,t) -n(x) = Q(x,t), x €'y, (4)
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where h(x,t) is hydraulic head, Hy(x) is the initial head in domain 2, H(x,t) is the pre-
scribed head on Dirichlet boundary segments I'p, K, (x) is hydraulic conductivity, g(x,t)
is source/sink term, QQ(x, t) is the prescribed flux across Neumann boundary segments Iy,
n(x) = (ny,--- ,ng)" is an outward unit vector normal to the boundary I' = T'p U Ty, ng
is the dimensionality of domain €2, and Sy is the specific storage. For simplicity, in this
study, we assume that S, is a constant because its variation is relatively small compared
to that of the hydraulic conductivity.

It is also assumed that the saturated hydraulic conditivity is a piecewise constant
function, which is defined on 2 that is partitioned into a number of unknown subdomains
(zones). We do not know the hydraulic conductivity values for these zones and do not
have enough direct information to infer the exact size, shape, and locations of these zones.
Given the following measurements:

Log hydraulic conductivity: Y, = (}7;) at locations x;,7 = 1, ny,
Type of stratigraphic units: q,ﬁ\o = (qlﬁ\z) at locations y;,i = 1, ng, and
head: hgy = (TLU) at locations x; and times t;, i = 1,n;, j = 1,4,
our aim is to find the spatial distribution of these zones in the domain and the saturated
hydraulic conductivity values for all these zones.

3. MATHEMATICAL FORMULATION

Suppose that there are a number of different stratigraphic units in an area of interest,
we want to find a piecewise constant function such that

d(x)=m, x€Q,CQ, (5)

where ©,,,, m =1, M is a unknown partition of Q, i.e., U,,Q,, = Q, and M is the number
of possible stratigraphic units. Here some of these €,,, m = 1, M, could be empty. In
practice, one should choose M such that it is slightly larger than the number of possible
stratigraphic units in the area of interest.

By defining basis functions associated with ¢:

vn() = — [[ 669 ~9), an=[[0m—), (©
™ j#m j#m

it is easy to verify that ¢,,(x) = 1 for x € Q,,, and ¥,,,(x) = 0 otherwise, and thus the log
hydraulic conductivity can be expressed as a piecewise constant function

Y(x) =) Yothm(x) (7)

where Y,, is the log hydraulic conductivity of subdomain 2,,. It is clear that Y (x) =Y,
for x € ,,, as expected. Note that both Y and 1, are polynomials of order M — 1 in
terms of ¢,

The basis functions v, can be used to measure the length of boundary 0f2,, and the
area of subdomain €2,

|an|=/Sl|wm|dx; |Qm|:/ﬂ1/)mdx. (8)
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If we further define

W(s(x) = [ (#(x) —m) (9)

m=1

then by enforcing W(¢) = 0, we ensure that a partition of 2 defined by Q,, = {x|¢(x) =
m} is unique and there is no vacuum or overlapped areas among €2,,, m =1, M.
The inverse problem can be formulated as a minimization of the following functional

1 & o ITem -
Fg,%0) = 5w (V) = ¥)% + 5 3wl (8(yi) = 60)°
i=1 i=1

N Ng M
bl bl ty) ~ By + 8 / Vim)ldx,  (10)
=1 j=1 m=1

where the first term measures the closeness of the estimated log hydraulic conductivity to
the observed values at all observations points x;, 7 = 1,ny. The second term represents
the difference between the observed and estimated types of stratigraphic units. The third
term in (10) measures the difference between the observed head and the modeled hydraulic
head using the estimated hydraulic conductivity field. The last term in (10) is the length
of all boundaries 0€2,,. Including this term in the objective function basically means that
we prefer to take a partition with a relatively smaller boundary length. The importance
of this term can be adjusted by tuning the coefficient 5.
The inverse problem becomes a constrained minimization problem:

E?%n F(¢,Y,), subject to W(¢) =0 (11)
» X0
where Yy = (Y1,Ys,---,Yy)T is a vector of permeability values for all units. The min-

imization in (11) can be solved by finding a saddle-point of the augmented Lagrangian
functional [Lie et al., 2005]

L6, Y0 ) = FG.0) + [ AW (@hax+ 5 [ W(0) (12)

where r > 0 is a penalty parameter, and A(x) is the Lagrange multipler, which is a
function defined on 2. At the saddle point we have

oL oL
%—0, E_O’ m—l,M, 5—0 (13)

3.1. 0L/0¢. Taking the derivative of (12) with respect to ¢ yields

0L o - Oh(xity
o = e - IS S i ) — iy X

=1 i=1 j=1

Vi \ O OW ow
- ﬁzv (wiim) s AT -
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which involves computation of 9Y/0¢, Oh/0¢, 01 /0¢p, and OW/0¢p. They can be derived

from (6), (7), and (9):
- ai > Il 09

k;émj;émk
ZY 3¢m Xz ’ (16)
6¢>J ‘/Q vy o ()

and

S 19

k=1 j#k
3.2. OL/0Y,,. Taking the derivative of (12) with respect to Y;, yields

oL i 8Y Xz 8h(Xz’ )
D V(I L 5 ST ML= LT

i=1 i=1 j=1

Using the properties of the basis functions, (??) can be reduced to

oL Oh(x; 1
LD IR TS 3 BUCHIEL MY s SR

{k: xp €} i=1 j=1 Qo

In the minimization process, we let 0L/0Y,, = 0, which is equivalent to

Vo=— 3 Tio o ii(h( t)—h )/ X i) e (o1

™= N, BTN, e 2K b)) | Ty ()
{k: x,€Qm } i=1 j=1 m

where N, is the number of direct measurements in €2,,. The first term in the above

equation represents the arithmetic mean of all Y measurements in subdomain €2,,,, and

the second term is the correction due to unfit between the modeled and measured head.

4. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the level set method with a two-dimensional synthetic
binary field. The test system consists of steady-state, saturated water flow in a rectangular
domain of 100 m x 100 m, discretized into elements of a size 1 m x 1 m. The true
(synthetic) permeability field is shown in Figure 1(a), in which a lower-permeable layer
(k = 107" m?) is embedded in the background material (k = 107° m?), offset by a fault,
and observed at two boreholes. Lacking other constraining information, the geometry of
the lower-permeable unit based on the traditional geological correlation will be incorrectly
interpreted as a laterally connecting bed in the region between the two dashed lines.
No matter how many observed head or concentration data are available, the parameter
estimates from model calibration using this incorrect geological model certainly will yield
erroneous results, and thus the prediction of flow and solute transport based on these
parameter estimates will also be incorrect. The boundary conditions are prescribed as
constant head at left (H; = 10.5 m) and right (Hy = 10.0 m) boundaries and no flow
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at the two lateral boundaries. The steady-state flow equation is solved for the synthetic
permeability field, and 36 steady-state head measurements at various locations (see Fig.
la) are assumed to be available.

Since the lower-permeable unit has been observed at two wells, we initialize the iterative
procedure by choosing an initial setting of lower-permeable zones as depicted in Fig. 3(b).
The new boundary of low-permeability zones is determined iteratively. This process is
repeated until either the prescribed number of updates has been reached or the difference
between the modeled head and the observed head is smaller than a prescribed value.
The evolution of the boundary 0D is depicted in Figure 1c-1f, where the artificial time 7
represents the number of updates. The final inversion results (Fig. 1f) are very similar
to the true structures and head distribution, indicating that the level set method can be
used to efficiently identify parameter zonation.

FIGURE 1. An illustrative example. (a) The problem configuration where
the lower-permeable layer is offset by a fault and observed in two boreholes.
The region between two dashed-lines is the possible lower-permeable zone
identified by the traditional geological correlation. (b) Initial lower perme-
able zones in the proposed approach, based on borehole observation. (c-f)
Identified lower-permeable units at several iteration steps.
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